
J .  Fluid Mech. (1991). vol. 233, p p .  2 M 8  

Printed in Great Britain 
25 

The viscous-diffusion nonlinear critical layer in a 
stratified shear flow 
By YU. I. TROITSKAYA 

Institute of Applied Physics, Academy of Sciences of the USSR, 
Nizhny Novgorod (Gorky), USSR 

(Received 7 December 1989 and in revised form 30 April 1991) 

Stationary finite-amplitude wave disturbances in a stratified shear flow with 
Richardson number larger than are investigated for large Reynolds numbers when 
viscosity and thermal conductivity, as well as nonlinearity, are essential factors in 
the critical layer. The jumps across the critical layer in average vorticity, reflection 
and transmission coefficients are calculated as functions of the local Reynolds 
number determined by the amplitude of the incident wave. With the increase of the 
incident wave amplitude the asymptotic value of the Richardson number on the 
same side of critical layer as the incident wave tends to a, the reflection coefficient 
tends to unity and the transmission coefficient to zero. 

1. Introduction 
The most interesting effects of wave-flow interactions occur in the vicinity of the 

critical layer (CL), where the phase velocity of the wave coincides with the flow 
velocity. Waves in large-Reynolds-number stratified flows are described within the 
linear non-dissipative approximation by the Taylor-Goldstein equation. This 
equation is known to have singularities in the CL. To remove them some additional 
factors should be taken into consideration, namely dissipation (Koppel 1964 ; Hazel 
1967; Baldwin & Roberts 1970; Bowman, Thomas & Thomas 1980; van Duin & 
Kelder 1986); nonlinearity (Kelley & Maslowe 1970; Maslowe 1972, 1973, see also 
Maslowe 1986 and Stewartson 1981 and references therein) ; or non-stationarity 
(Booker & Bretherton 1967; Miles 1961; Howard 1961). In all the above-mentioned 
papers these factors are taken into account only very close to the CL, i.e. when the 
inner solution is constructed. Away from the CL vicinity the waves are considered to 
be linear, non-dissipative and stationary (outer solution), and the inner solution is 
used to connect the fields above and below the CL, i.e. to obtain rules for crossing the 
CL. On this point they principally differ from the works by Brown & Stewartson 
(1978), Brown, Rosen & Maslowe (1981), and Churilov & Shukhman (1987, 1988), 
where nonlinearity is taken into account both inside and outside the CL. However, 
the results are obtained in a weak-nonlinearity approximation by the method of 
small disturbances, 

Non-stationary and dissipative theories are well known to yield the same 
transitional relations. The phase shift of the complex logarithmic function in the 
solution of the Taylor-Goldstein equation equals -n. Because of that, in the stably 
stratified case with Richardson number Ri > a a wave passing through the CL is 
attenuated by the factor e”, where p = (Ri-0.25)i. 

Neglect of dissipation gives a different picture of wave fields in the CL vicinity 
(Kelly & Maslowe 1970; Maslowe 1972, 1973). The patterns of streamlines are 
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symmetrical about the CL, so the wave-field amplitudes are unchanged when the 
wave field passes through the CL and the phase shift equals zero. 

In  the works mentioned, the relations were obtained taking dissipation, 
nonlinearity and non-stationarity in the CL into account separately. Then the 
combined effect of the factors was considered. Brown & Stewartson (1980, 1982a, b )  
investigated wave-flow interaction for the case of a nonlinear, non-stationary, non- 
viscous CL a t  Ri 4 1 in the weak nonlinear approximation. The time period for which 
these results are applicable is limited to  while dissipation can be neglected. The 
results are valid when t 4 Ht./v (here H,, is the CL thickness, and v is the viscosity 
coefficient). On the other hand, when t 4 H&/v  time-dependence disappears the 
fields in the CL vicinity are determined by competition between dissipation and 
nonlinearity. The steady problem of the combined effect of dissipation and 
nonlinearity was considered by Haberman in 1972 for the homogeneous case, and in 
1973 for the case of weak stratification (Ri 4 1). The main purpose of the present 
work is to obtain rules for crossing the stationary CL that  depend on the 
dissipation-nonlinearity relationship in its vicinity (i.e. on the internal vertical 
Reynolds number of the CL) for the case of a stratified shear flow with the 
Richardson number Ri > a. Since the approach to the problem is similar to  that of 
Haberman (1972, 1973) the present paper follows his logics when describing the 
results. 

The study has the following structure. The problem is formulated in $2. I n  $3 the 
system of equations describing the fields in the CL vicinity is presented and 
expressions connecting parameters of the mean flow and the wave amplitudes above 
and below the CL are obtained by considering the momentum and mass fluxes. In  $4  
the method for numerical integration of the system from $3 is presented. In  $ 5  the 
results of numerical calculations are discussed. 

2. Formulation of the problem 
Consider a two-dimensional flow of stratified incompressible fluid taking into 

account its viscosity and thermal conductivity. Within the Boussinesq approxi- 
mation the non-dimensional equations for vorticity and density have the following 
form : 

a a6 1 
- V v 2 Y + J ( V 2 Y ,  !P) -  = - v ~ v ~ Y ,  
at ax Re 

V'b. 
a 
- b + J ( b ,  !P) =- 
at Re Pr 

Here V2 = a2/ax2 + a2/ay2 is the Laplace operator, J (a ,  b)  = a(a, b)/a(z, y )  is a 
Jacobian, x, y = xdim/Lo, ydim/Lo are non-dimensional horizontal and vertical 
coordinates, Lo is the scale of flow, t = tdim U,/Lo non-dimensional time, Uo the scale 
of velocity, Y = Y d i m / (  U,,L,) the non-dimensional stream function, 

b = (P-Po)g / (N:LoPo)  

non-dimensional density, No the characteristic value of the BrunbVaisala frequency, 
Re = UoL,/u the Reynolds number defined in terms of the parameters of the 
background flow; Pr = u/vt the Prandtl number (for water Pr = 7 ,  for air 
Pr = 0.7-l), and u,  vt are viscosity and thermal conductivity coefficients. 
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For Re, 9 1 the solution of (2.1) for a region far from the CL and the boundary 
layers can be found as a series expansion in Reil:  

($*, b,) = ($, b)  +Re,’($,, b,) + * * * 9 

where ($, b )  satisfy system (2.1) and viscosity and heat conductivity are neglected. 
Consider a plane harmonic wave disturbance of small amplitude e against a 

background flow with velocity profile U,(y), and density profile b,(y). Then it is 
possible to find a solution of (2.1) in the form of a series expansion in e. Therefore 

CO 

‘Y = [Uo(y) dy + E x Re [ F;)(y) exp {in(& - ICX)}] + e2 F2) + . . . ,) 
(2.2) 

J n-1 

s n-1 

CO 

b = b,(y) dy + e x Re [bg)(y) exp {in(& - kz)}] + e2b(2) + . . . . 
Here o, k are the frequency and the wavenumber, respectively. 

It should be mentioned that both the fundamental harmonic and higher harmonics 
arising from the nonlinear wave-flow interaction in the CL vicinity occur far from 
the CL. The high harmonics appearing from the wave incidence on the CL have been 
found by Brown & Stewartson (1982b). In that paper, however, only the first stage 
of the flow formation in the CL vicinity was studied when t < Re,d (giving an 
expression equivalent to that in $ 1  ; see also the definition of the CL thickness in $3), 
and the influence of dissipation could be neglected. In the present paper the stage of 
flow stabilization when t & Re,€$ is considered. 

The functions $g)(y), b g ) ( y )  can be determined from (2.1) to the first order of e and 
zeroth order of Re;l. The stream-function disturbance appears to satisfy the 
Taylor-Goldstein equation : 

and the normalized density disturbance bn is connected with Yn by 

bg)  = -NZFl)(U n o  -c)-’ .  (2.4) 
Here N 2  = db,/dy is the normalized Brunt-Vliisalli frequency squared; and c = o / k  
is the phase speed of the wave. 

A solution of (2.3) can be obtained by means of the Frobenius method as a series 
in the vicinity of the critical point yc, where Uo(yc)  = c. If the Richardson number at 
the critical point Ri = N2(yc)/(U,(yc))2 > f, it follows that 

(2.5) ‘Yl = M Y )  (Y-YcF+)+Bg(Y) (Y-Yc)+’”, 

bl = -N2(Yc)/v3(Yc) (Afl(Y) (Y-Yc)-t+‘l”+Bg,w (Y-Yc)-+’% 

Withf(YC) = g ( Y c )  = 1. 
According to (2.4), b1 is defined as 

(2.6) 

Equation (2.4) has singularity points yc giving rise to branch points in its solutions 
(2.5), (2.6). This means that (2.3) is invalid in the vicinity of the CL. Some extra 
factors, therefore, have to be taken into account here. A lot of papers are known to 
describe separately viscosity and thermal conductivity, nonlinear or non-stationarity 
in the CL vicinity (see the references in the Introduction). In the present paper the 
combined effect of dissipation and nonlinearity on a stationary wave is considered. 

Withfl(YC) = g , ( Y c )  = 1. 

2 FLY 233 
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Since the Reynolds number of the background flow (Re,) is large and the wave 
amplitude E is small, it is possible to use the method of matched asymptotic 
expansions taking into consideration dissipation and nonlinearity only very close to 
the CL (its scale is defined below) to obtain the inner solution. The wave-field 
asymptotic form far from the CL is determined by the solutions of the linear inviscid 
equations (2.5), (2.6), i.e. the outer solution. And the inner solution is used to yield 
the rules for removing the singularities from the outer solution. 

3. The nonlinear viscous-diffusion critical layer 

obtained if solution (2.2) is presented as series in z = y - y c  : 
An asymptotic expression for the outer solution at  small Iy-ycl can be easily 

Y, = E f C * Z + & * 2 +  ... 
m + E C (Re [[C:lzlfiip* (1 +a: z+ . . .) +D:lzlfip* (1  +a: z+ . . .)I e'@]), 

n-1 

a3 

x C (Re [[C: lzl-bifi* (1  +/3: z+ . . .) +D? Izl-+'p* (1 +/3! z + . . .)] e't"]). (3.1) 

Signs ( + ) and ( -  ) respectively refer to the solutions above and below the CL, 6 = 
k ( s  - c t )  is a normalized horizontal intrinsic coordinate. 

The terms $, z2 represent a vorticity jump across the CL which arises similarly to 
that obtained by Haberman (1972, 1973). But unlike those papers the vorticity jump 
here arises at the zeroth order of E .  Also the jumps in the average velocity and density 
are taken into account in (3.1). They are expressed by the terms E;C* z in Y, and the 
terms &?* in b ,  respectively. Similar terms were introduced by Haberman (1973) for 
a slightly stratified flow. And in the present paper, as in Haberman's, the jumps in 
velocity and density are of a higher order in E than the vorticity jump. The task 
consists in determining the connection between the values with subscripts (+ ) and 
( -  ), i.e. the rules for crossing the CL, and yielding the high-harmonic amp1itudes.t 
For this purpose the inner solution has to be found. An obvious result from (3.1) is 
that the vertical inner coordinate should be defined as follows: 7 = z / &  (see for 
example Maslowe 1972; Tung, KO & Chang 1981). Then (3.1) immediately takes the 
form 

n-1 

I Y = E+po+E2p1 + . . . , 
b = €%, + E$bl + . . . . 

The asymptotic valuesv, and b, for q+k co @,+, b o k )  are obtained from (3.1). They 
have the following form : 

a3 

v,, = qc* +$, qz+ C Re ([A?Iqli+'p* +B:171kip* 1 eifn ) 9  (3.3a) 

(3.3b) 

t Kote, tha t  in (3.1) the Brunt-Vaisalii frequencies are formally set unequal above and below the 

n-1 

- N 2  
b,* = /3* -N2, - q + f C Re ([A:l$bip* +B:(ql-kip* 1 eitn ). 

U, n-1 

CL ( N : ) ;  however, i t  is shown below tha t  N:  and NZ appear to  be equal. 
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Here A; = C; $pi ; B2 = B; d i p *  ; m* = (N$ /u;  -0.25);. One more normalization 
is introduced to simplify the following calculations, namely : p, = (p,, - c+ 7)/u- ; b = 

Substituting (3.2) into the system (2.1) and reserving only terms of lowest order in 
(b0 - P+ ) / N l .  

E yields the system for p, and b :  

( 3 . 4 ~ )  

(3.4b) 

Here Ri = NZ/ul is the Richardson number for 7 + - 00, and A = (Re, u- e2)-l is the 
parameter characterizing the ratio of viscosity to nonlinearity. To be more exact, 
A = (GVis/SnJ3, where Sv,,= (Reou-)G is the scale of a ‘viscous’ CL (see for example 
Hazel 1967), and S,, = €5 is the scale of a nonlinear CL (Maslowe 1972; Tung et al. 
1981). It follows from (3.4) that h has the sense of a vertical inverse Reynolds number 
(Re, = h-l) determined by the amplitude of the wave disturbance in the vicinity of 
the CL. The limit A+ co (Re 4 1) corresponds to a viscous linear flow in the vicinity 
of the CL, and h+O (Re, % 1) corresponds to a nonlinear non-viscous one. 

In general, the system (3.4) should be solved to determine the rules for crossing the 
CL, but some relations may be obtained without finding the solution. 

Thus an expression for the jump in vorticity can be obtained merely by considering 
the wave and viscous momentum fluxes. Equation ( 3 . 4 ~ )  may be integrated with 
respect to 7 from - co to co and with respect to 6 from 0 to 2x. Taking into account 
the [-periodicity of the solution gives 

Then, integrating (3.5) with respect to 7 from -co to +a yields 

Equation (3.6) shows that the radiation force (which is equal to the difference in 
the wave momentum fluxes above and below the CL (left-hand side of (3.6))) is 
compensated in the stationary flow by the viscous force which is equal to the 
difference in viscous stresses (the right-hand side of (3.6)). It results in the formation 
of a, flow in which vorticities tend to some generally different constants (u*) far from 
the CL. The difference in the vorticities, determined by the wave momentum fluxes, 
obviously depends on the amplitudes of the wave harmonics above and below the CL 
(which are determined by the boundary conditions at infinity), i.e. it finally depends 
on the way the problem is set. 

Substituting the asymptotic expression ( 3 . 3 ~ )  into (3.6) and making a simple 
transformation gives 

m a, 

where u- = 1. 
2-2 
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Further, we consider the problem of reflection and transmission of a unit- 
amplitude fundamental wave disturbance propagating toward the CL from the 
region g > 0. The following amplitudes of the wave asymptotic forms for g-t  f 00 

correspond to the case 

IB:I=l; A : = R ;  B ! = T ;  A ! = O ;  A Y = R n ;  B 2 = T n ;  BT=A!!=O 

for n = 2 ,  ..., (3.8) 

where R ,  T a r e  reflection and transmission coefficients of the fundamental mode. R,, 
T, are the nth harmonics of the reflected and transmitted fields, which are the 
amplitudes of the high harmonics radiated by the CL which are normalized by the 
amplitude of the incident wave of the fundamental mode. The equality of B3 and A!! 
to zero means that there are no high harmonics propagating toward the CL. 

Under these conditions (3.7) takes the form 

Consider now the consequence of (3.4b) for density. Integrating (3.4b) with respect 
to g from - 00 to a0 and with respect to ( from 0 to 2n and taking into account the 
(-periodicity of the solution gives 

(3.10) 

Equation (3.10) together with (3.8) gives N I  = NZ, where NZ = 1, according to  
normalization, because of the equality of the wave mass fluxes above and below the 
CL, which are equal to zero. So the diffusion mass fluxes and consequently the 
density gradients are also equal. 

Thus, the values of Brunt-Vaisala frequencies above and below the CL are equal, 
but the values of the velocity shear are not. This means that the Richardson numbers 
are different. Under accepted normalizing conditions Ri+ = Ri/u! above the CL and 
Ri- = Ri below the CL. 

Simple expressions for the jumps across the CL in the average velocity and density 
that include only amplitudes of the wave asymptotics cannot be obtained. However, 
double integrating (3.5) with respect to g and taking into account (3.9) yields 

where 

" d F  
2A -m dg 

C+-C = -'I g-dg, (3.11) 

is the wave momentum flux. 
An expression for the density jump can be obtained in a similar manner to (3.11) : 

1 " d B  
2h --oo dg 

/?+-/3- = --I g-dg. (3.12) 

Here B = (1/21r) 
vicinity. 

b(+/a( )  d( is the wave mass flux ; it differs from zero in the CL 
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4. The spectral model of the nonlinear viscous-diffusion critical layer 
Expression (3.9) determines the relation between the amplitudes of the asymptotic 

values of the wave field and parameters of the mean flow above and below the CL. 
To calculate the terms of (3.9) and also the velocity and density jumps, the solution 
of system (3.4) should be obtained. The analytic treating of (3.4) seemed to be 
unmanageable, so it was evaluated numerically. 

Representing ( 3 . 4 ~ )  in the form of two equations yields a nonlinear system of three 
equations of the second order for the stream function v, density b and vorticity x: 

Since the solutions of (4.1) are 6-periodical, functions x, b , q  may be represented as 
Fourier series expansions : 

i M  

Here x-,, b , , q ,  = 27, b,*,q,,*, (* means complex conjugation), since the functions x, 
b,v are real. There is an infinite number M of series terms in the expansions (4.2) of 
the exact solutions of (4.1), but since the amplitudes of the harmonics diminish with 
growth of their numberj, taking into consideration a finite number of harmonics will 
suffice. (The relation of the amplitudes of high harmonics to  the fundamental one is 
discussed below.) This makes it possible to realize a numerical spectral model 
consisting of a finite number of harmonics. Substitution of (4.2) into (4.1) gives a 
system of three equations for the average components x,, b,, v0, and 31M nonlinear 
ordinary differential equations for complex amplitudes of harmonics x,, b,,q, : 

( 4 . 3 ~ )  

(4.3b) 

(4.3c) 

( 4 . 4 ~ )  

(4.4b) 

j=~,..., M .  
dV2 

(4.4c) 
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Here 

(4 .44  

The components S,(a, cp) are determined by nonlinear terms. Taking into account the 
asymptotic behaviour of the wave fields at  infinity, integration of (4.3a, b) yields 

Pr 

2h j-1 

bo, = - 1 --Im 2 Im (jbjvf). 

Taking into account that xo( - 00) = 1, integration of ( 4 . 5 ~ )  giyes 

(4.5b) 

(4.5c) 

The boundary problem for the system (4.4) has been solved to find the amplitudes 
of the harmonics x,, b,, vj. Matching with the asymptotic form (3.3) of the wave fields 
completed by the expression for the vorticity field (x = v,,J has been used as the 
boundary conditions. In practice these boundary conditions have been realized in the 
following way. For 7 = z,, > 0 (where lzol 9 max {avis, 1)) the complex amplitudes of 
the fundamental harmonics of the wave fields have been determined. Namely, 

For the higher harmonics the radiation conditions were formulated 

(4.7a) 

This means that there are no high wave harmonics propagating towards the CL and 
the only ones radiated by the CL occur when q = zo. It should be mentioned that the 
results of the numerical calculations show that the high-harmonic amplitudes are 
extremely small for all the parameters of the problem under consideration. For 
example the maximal second harmonic amplitude is of order with respect to the 
fundamental one. Taking this into account enables the radiation conditions ( 4 . 7 ~ )  to 
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be replaced by the zero boundary conditions for 7 = zo, giving better stability of the 
numerical model. Namely 

q j ( z o )  = b,(zo) = xj(zo) = 0 for j = 2 , .  . .M.  (4.7 b)  

The conditions (4.7 b) are clearly equivalent to the assumption that the extremely 
weak high-harmonic waves propagates toward the CL provide the zero boundary 
conditions at 7 = zo. As numerical estimates show, the differences between the CL 
characteristics (reflection and transmission coefficients, jumps in velocity, density 
and vorticity) yielded under ( 4 . 7 ~ )  and (4.7 b)  boundary conditions do not exceed 
1 Yo. 

It should be mentioned that the amplitude of the incident wave differs from unity 
when the amplitudes of the first harmonics are defined by (4.6), i.e. in this case 
IB+I + 1 ; A+ = RB+ ; B- = TB,. The inner variables should be renormalized to give an 
incident wave of unit amplitude : 

vold . Fold . b = -  bold 
?I=- Q,=- P+lf ' 

Parameter h is also renormalized to 

= hold/lB+Iz* (4.8) 

It should be emphasized that h but not hold is the term in (3.9). The jumps in velocity 
and density are renormalized in the following way: 

and the phase of the reflection coefficient changes, namely 

= arg (R) = (Rold) +%'+ In IB+I '  
When 7 = zl, where z1 < 0 (just as 1 . ~ ~ 1 ,  lzll > max{dvis, l}), the wave fields satisfy 

the radiation conditions, the form of which follows from the asymptotic expressions 
(3.3) : 

The zero boundary conditions for 7 = zl, as for = zo, can be set for the high 
harmonics since their amplitudes are extremely small. 

The problem has been solved by means of the grid method. The step size (h)  of the 
grid has been chosen to be much less than dvis and 1. The calculations were carried 
out for h = 0.02 and h = 0.04. The differences of the calculated values in this two 
cases were of order The finite-difference approximation of the system of 
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differential equations (4 .3)  leads to a system of algebraic equations which may be 
written in matrix form: 

A,(Y) q = B,(Y). (4.10) 

Here I; is a column vector of the functions x,, b,, v, at  N points (nodes of the grid). 
Namely : 

bj(vi)  = bj" = Y,(3i-2), x~(T*) = y3(3i- l), vj(vi) = vj*) = Y,(3i). 
A, is a band matrix (3Mx 3M) with band width equal to seven. When the uniform 
grid is used the elements of matrix A, according to (4.3), (4 .7b)  for i = 1,. . . , N, j = 
2 ,..., M and i = 1 ,..., N-1, j = 1 are 

A(3i-2,l)  = A/Pr, 

A(3i-2,2) = 0, 

A(3i-2,3) = 0, A(3i-1,3) =ijhZRi, A(3i, 3) = -h2, 

A(3i-2,5) = 0, A(3i-1,5) = ijh2X& A(3i, 5 )  = 0, 

A(3i-2,7) = 0, A(3i- 1,7) = A, A(3i,7) = 1. 

A(3i- 1, l)  = A, 

A(3i- 1,2) = 0, 

A(3i, 1) = 1, 

(3i, 2) = 0, 

A(3i-2,4) = -2A/Pr-ijh2q$2, A(3i-1,4) = -2A-ijh%i:, A(3i,4) = -2, 

A(3i-2,6) = ijh'bk', A(3i- 1,6) = 0, A(3i, 6) = 0, 

The expressions for A, at i = N follow from the finite-difference approximation of 
the boundary radiation conditions (4.9). They have the form: 

A(3N-2,l) = 2A/Pr, 

A(W--2,4) = -2A/Pr-ih2~if)+2h( -0.5-ip-)A/Pr/z1, 

A(W-1,4) = - 2 h - i h 2 v ~ f ) + 2 h ( - 1 . 5 - i p - ) h / z , ,  

A(3N- 1 , l )  = 2A, 

A(3N, 1) = 2, 

A(W, 4) = -2- ih2tpi7) + 2h(0.5 -ip-)/z,. 

The expressions for the elements of the matrix A, corresponding to the boundary 
conditions ( 4 . 7 ~ )  can be similarly obtained. The column vector B,( Y) in (4.10) follows 
from the finite-difference approximation of the nonlinear terms in (4.4). In this case 
for i = 2, ..., N 

B1(3i-2) = h2S;, 
B1(3i- 1) = h2Sf, 

B1(3i) = 0. 

Here S; and Sf are finite-difference approximations of (4.44. From the boundary 
conditions (4.6) the expressions for B, follow : 

B1(3i-2) = -A/Prb,(z,)+h2S;, 

B1(3i-- 1) = -AX1(Zo)fh2Sf,  

B,(W = -vl(zo). 
An iteration method has been employed to solve system (4 .8) .  At every step the 

algebraic system with the matrix A has been solved by means of the Gauss 
elimination method. The numerical algorithm described by Forsythe & Moler (1967) 
has been used, modified for the case of a band matrix. 
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FIQURE 1.  The absolute values of the amplitudes of the vorticity-field harmonics. The curves are 
labelled with the number of the harmonic mode. The parameters of the flow are (a) A = 0.22, 
Ri = 3; ( b )  A = 0.91, Ri = 3; (c) A = 0.0016, Ri = 1. Pr = 0.71. 

Before passing on to a description of the numerical calculation results we shall 
remark on the applicability of the spectral model for the investigation of the 
stationary nonlinear viscous-diffusion CL. The spectral model can obviously be 
successfully applied if usage of a few harmonics suffices to achieve a satisfactory 
accuracy. As waa mentioned above the amplitudes of high-harmonic asymptotics 
were small with respect to the fundamental one; however, in the CL vicinity the 
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high-harmonic amplitudes are comparable with the fundamental one, but decreasing 
with their mode number grows. The different characteristics of the CL depend 
differently on the number of harmonic modes taken into account. Thus only the 
fundamental mode suffices to calculate the vorticity jump for a wide range of Ri and 
A. It follows from (3.9) that if the reflection and transmission coefficients of the 
fundamental harmonic are small then the vorticity jump can be determined with an 
accuracy of lRlz, la2. However, the structure of the wave field in the CL vicinity 
(where harmonics are of comparable amplitude) is required to calculate the reflection 
and transmission coefficients and the velocity and density jumps. So a number of 
harmonic modes should be taken into consideration. The absolute values of the 
vorticity-field harmonic amplitudes for some values of parameters Ri and A are 
plotted on figure 1. As the mode number of a harmonic grows its amplitude is seen 
to decrease rapidly, which permits one to  use a spectral model consisting of a few 
harmonics modes for a wide range of parameters Ri and A. I n  practice, the number 
of harmonics modes has been limited if the addition of one more does not change the 
velocity and density jumps within the accuracy, and the number of harmonic 
modes M required did not exceed 10. There is no contradiction here with the review 
article by Maslowe (1986) since in that work the marginally sufficient number of 
harmonics M = 32 corresponded to an internal Reynolds number Re, = 200.t I n  our 
calculations the vertical internal Reynolds number did not exceed 100, so a smaller 
number of harmonics has appeared to be sufficient. We shall return below to the 
discussion of the internal Reynolds number for h -+ 0. 

5. The results of numerical calculations 
The values of the variables in (3.9), namely u+, IR(, IT[, and also the velocity 

(c+ -c-) and density (/3+ -b-) jumps, against A are obtained from numerical 
calculations : u+(A), IRI ( A ) ,  the normalized value IT1 @-"(A), the phase of the reflection 
coefficient the values (c+ - c-) ( A )  and (/3+ -p-)  ( A )  are plotted respectively on 
figures 2-7 for four values of the Richardson number, Ri = 0.5, 1 ,  2, 3. 

The function u+(A) may be described by a simple expression for a wide range of A. 
Indeed, for all Ri 2 1 and A 2 0.15, as one can see from figures 3 and 4, the reflection 
and transition coefficients squared are much less than unity, i.e. IRIz % 1; 1qZ % 1. 
And in this case the following relation results from (3.9) : 

On figure 2 the dashed curves indicate the dependence of h on u+ calculated according 
to (5.1). They are seen to  coincide with the numerically calculated dependence 
relationships for almost all A. Differences exist only in a narrow range near A = 0. The 
small values of A are typical for waves in the ocean and atmosphere (Tung et al. 1981). 

It follows both from the numerical calculations and from the expression (5.1) that 
as h tends to zero, then the meaning of u+ tends to  the value 2Rii for which the 
Richardson number above the CL (Ri,) equals a and ,u+ = 0. But the character of the 
relationship A(u+) which follows from (5.1) differs from that obtained from numerical 

t To be more exact it should be mentioned that the calculations reviewed in Maslowe's article 
were carried out for Ri, = 200. But one can see from Collins & Maslowe (1988) that in the 
calculations the CL scale was of the order of unity in the variables of outer flow. In our terms this 
means that Ri, x Ri,. 
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A 

FIGURE 2. The dependence of the vorticity value above the CL, u+, on A for the following values 
of the Richardson number: (a) Ri = 0.5, (b) Ri = 1 ,  (c) Ri = 2, (d) Ri = 3. Pr = 0.71. The dashed 
curves represent the function u+(A) calculated by (5.1). 
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0' 0.4 0.8 I .2 
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FIQURE 3. The dependence of the absolute value of the reflection coefficient IRI on A for 
(a) Ri = 0.5, (b) Ri = 1 ,  (c) Ri = 2, (d) Ri = 3. Pr = 0.71. 
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FIGURE 4. The dependence of the normalized value of the transmission coefficient 111 exp (cl- n) on 
h for (a) Ri = 0.5, (b) Ri = 1, (c) Ri = 2, (d) Ri = 3. Pr = 0.71. 
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FIQURE 6. The dependence of the velocity jump c+-c- on h for (a) Ri = 0.5, ( b )  Ri = 1, 
(c) Ri = 2, (d) Ri = 3. 
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FIGURE 7. The dependence of the density jump /!?+-/!?- on h for (a) Ri = 0.5, ( b )  Ri = 1, 
(c) Ri = 2, (d) Ri = 3. Pr = 0.71. 

calculations. When A tends to zero one can see from figures 3 and 5, and figure 4 
respectively that the reflection coefficient R tends to minus unity and the 
transmission one T tends to zero. This numerical result can be explained by the 
following qualitative arguments. When Ri, tends to a, the wave field becomes less 
oscillatory, i.e. the effective vertical wavelength above the CL tends to infinity. At  
the same time Ri below the CL is not equal to a and the wavelength is finite. Thus 
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the situation appears to be similar to the reflection of waves a t  the boundary of media 
with strongly different refraction coefficients, where the reflection coefficient 

R = - 1 + O ( k , / k , ) ,  

and k,, k, are respectively the wavenumbers of the incident and transmitted waves. 
In the case under consideration k l / k 2  is of the order p+/p- and the reflection 
coefficient 

R = - 1 + O(p+/p-) ; (5.2) 

and the order of the transmission coefficient does not exceed p+/p-. Taking this into 
account in (3.9) yields 

A = O L  -(2Rii- 1) ). (5.3) 

For a small p+ the complex amplitude of the wave field above the CL is a small value 
of order p+. Indeed 

In this case the inner variables determined by the amplitude of the incident wave 
become unnatural for the CL. The inner variables should be renormalized to turn the 
natural variables in which the wave fields are of the unity order, namely 

qnew = ; ?new = ~ICL‘s ; bnew = b / A -  ; Xnew = X. 
Determined in the new variables, the vorticity jump remains the same, but the 
velocity and density jumps are renormalized in the following way: 

(c+-c-)new = ( c + - C - ) / A - ,  (P+-P- )new = (P+-P-)/pi* 

The fields cp,,, and b,,, satisfy system (3.4) in which A,,, is of order Ap;,. Together 
with (5.3) this gives 

A,,, = O((Ri-0.25) (mil- l))-i. (5.4) 
It clearly follows from (5.4) that A,,, decreases when Ri grows, i.e. the CL becomes 

‘more nonlinear ’. It should be mentioned that the variables with the subscript ‘new’ 
are equivalent to those with the subscript ‘old’ from (4.8) since the amplitudes of the 
fields in (4.6) expressed in the ‘old’ variables are of unity order, and A,,, is evidently 
of the same order as Aold from (4.8). 

Thus, if the Reynolds number determined by the incident wave amplitude (A - l )  
grows, then the value of u+ tends to %it for which Ri+ = a. In this case the reflection 
wave appears to have a reflection coefficient close to unity in the antiphase of the 
incident wave. This leads to the total wave field (the sum of the incident and reflected 
wave fields) having an amplitude much less than that of the incident one. Moreover, 
if the amplitude of the incident wave increases ( A  decreases) Ri+ becomes closer to a, 
the reflection coefficient becomes closer to minus unity and the value of the total field 
remains invariable (A,,, does not depend on A ) .  As a result the flow in the vicinity 
of the CL does not vary, and the Reynolds number of this flow Renew is determined 
by the parameter A,,, (or by Aold which is just the same) but not by A. As a result 
the Reynolds number in the CL vicinity remains fixed and not large when A - t O .  
Estimated from hold, for Ri = 0.5, Renew x 10; for Ri = 1, Renew x 30; for Ri = 2, 
Renew x 60; for Ri = 3, Renew x 70. 
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FIGURE 8. The streamline pattern in the vicinity of the CL. The flow parameters are 
(a)/\=0.22,Ri=3;(b)/t=0.91,Ri=3;(c)A=0.0016,Ri=1;Pr=0.71. 

This result differs from that of Maslowe (1972), where a symmetric pattern of 
streamlines was constructed for h = 0 including the case Ri, > a. This difference is 
caused by neglecting in that work the jump of vorticity in the mean flow when the 
solution in the vicinity of the CL is constructed. And it results in the neglect the wave 
reflected from the CL. At the same time the numerical calculations and qualitative 
considerations given above show that as h tends to zero a jump in vorticity occurs, 
from which the wave reflects with an opposite phase and a reflection coefficient close 
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FIGURE 9. Vertical profiles of density b ( 5 , ~ )  for 6 taking values from 0 to 2x with a step of in, 
Pr = 0.71. (a) A = 0.22, Ri = 3 ;  (b) A = 0.91, Ri = 3 ;  (c) A = 0.0016, Ri = 1. 

to unity. As a result, the wave-field amplitude in the vicinity of the CL becomes 
much smaller than the amplitude of the incident wave. And the actual ‘nonlinearity’ 
becomes considerably smaller than that determined by the parameter A. 

In conclusion we shall discuss some figures illustrating the behaviour of wave fields 
in the vicinity of the CL. Streamline patterns for some parameters of the flow are 
shown on figure 8. Sections through the CL of the density field b,  the density-gradient 
field p7, the velocity field u and the vorticity field x are plotted on figures 9-12 
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same as 

respectively, and the average fields bot, xo, uo shown on figure 13. It should be 
emphasized that inner variables determined by the incident wave amplitude are used 
everywhere. 

The pattern of streamlines in the CL vicinity is a modification of the familiar 
Kelvin’s cat’s eye solution; a region of coupled streamlines exists (figure 8). The 
streamline pattern is non-symmetric about the CL. This is due to the strong 
attenuation of a wave passing through this layer. The transition from one wave-field 
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FIQURE 11. Vertical velocity profiles u ( 5 , ~ ) .  All the parameters are the same as for figure 9. 
z 

asymptotic form to another is seen from a comparison of figure 8 and figures 9-13 and 
occurs in the region of coupled streamlines. 

It should be noted that figure 8(c)  corresponds to the small value of A = 0.0016. 
In this case the Richardson number above the CL is close to %. The streamline pattern 
(figure 8c)  differs from the symmetric cat's-eye flow: on the one hand, the width of 
the closed-streamline region is 0.4, on the other hand, since A = 0.0016 the viscous 
scale Svis = A; = 0.1. Thus, in this case viscosity and thermal conductivity are 
essential factors in the CL. 
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FIGURE 12. Vertical vorticity profiles x(&,y). All the parameters are the same as for figure 9. 
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6. Conclusions 
A numerical investigation of the nonlinear viscous-diffusion stationary CL enables 

one to understand a number of its qualitative features. 
Owing to nonlinear interaction between the wave and the flow the jump in average 

vorticity across the CL occurs at the zeroth order of the wave amplitude. Its origin 
is associated with the following. A jump in the vertical flux of the horizontal 
momentum component of the wave occurs across the CL, which means that a, 
horizontal radiational force acts in the CL and in the stationary case it has to  be 
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FIQURE 13. Profiles, averaged over a wave period, of (a )  density gradient b,,, ( b )  vorticity xo, 
(c) velocity u,; Pr = 0.71. 

balanced by a viscous force. As a result a flow is formed in which the asymptotic 
values of the vorticity far from the CL are constant but different. No jump in the 
Brunt-Vaisala frequency across the CL takes place because there is no vertical mass 
flux in the internal waves either. Thus the Richardson numbers above and below the 
CL are different. In  addition, the jumps in the average velocity and density across 
the CL occur a t  order &. The value of the vorticity jump depends on the parameter 
A (the inverse vertical Reynolds number in the vicinity of the CL), it grows as A tends 
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to zero or as the wave amplitude grows. A wave propagating toward the CL is 
reflected and partially transmitted. The relationships between the vorticity jump 
and the wave reflection and transmission coefficients are constructed for a set of 
Richardson numbers. 

An interesting feature of the flow occurs when h tends to zero. In  this case the 
value of the velocity shear on the incident-wave side tends to the value for which 
Ri = t, the reflection coefficient tends to minus unity and the transmission coefficient 
tends to zero. And if the incident wave amplitude increases (or h decreases) the 
reflection coefficient becomes closer to minus unity, so the total wave field in the 
vicinity of the CL (incident one plus reflected one) does not depend on the incident 
wave amplitude. The total wave field is considerably smaller than the incident one, 
i.e. the CL is really less ‘nonlinear’ than would follow from the amplitude of the 
incident wave, and the structure of the flow in the CL is independent of the incident 
wave amplitude, and the Reynolds number in the CL vicinity remains fixed and not 
large when h + 0.  Thus, for Ri = 0.5, Renew x 10 ; for Ri = 1, Renew x 30 ; for Ri = 2, 
Renew x 60; for Ri = 3,  Renew x 70. As a result the marginally sufficient number of 
harmonics required for the solution is not very large (less than 10). 

The author would like to thank Dr V. P. Reutov for helpful discussions and Dr V. 
Yu. Zaitsev and Mr V. E. Philippov for their help in preparation of the English 
version of the manuscript. The comments of referees provided valuable improvement 
of the paper. 
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